Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hierarchical Reinforcement Learning with Abductive Planning (1806.10792v1)

Published 28 Jun 2018 in cs.LG, cs.AI, and stat.ML

Abstract: One of the key challenges in applying reinforcement learning to real-life problems is that the amount of train-and-error required to learn a good policy increases drastically as the task becomes complex. One potential solution to this problem is to combine reinforcement learning with automated symbol planning and utilize prior knowledge on the domain. However, existing methods have limitations in their applicability and expressiveness. In this paper we propose a hierarchical reinforcement learning method based on abductive symbolic planning. The planner can deal with user-defined evaluation functions and is not based on the Herbrand theorem. Therefore it can utilize prior knowledge of the rewards and can work in a domain where the state space is unknown. We demonstrate empirically that our architecture significantly improves learning efficiency with respect to the amount of training examples on the evaluation domain, in which the state space is unknown and there exist multiple goals.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube