Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

An explicit construction of non-tempered cusp forms on $O(1,8n+1)$ (1806.10763v1)

Published 28 Jun 2018 in math.NT

Abstract: We explicitly construct cusp forms on the orthogonal group of signature $(1,8n+1)$ for an arbitrary natural number $n$ as liftings from Maass cusp forms of level one. In our previous works, the fundamental tool to show the automorphy of the lifting was the converse theorem by Maass. In this paper, we use the Fourier expansion of the theta lifts by Borcherds instead. We also study cuspidal representations generated by such cusp forms and show that they are irreducible and that all of their non-archimedean local components are non-tempered while the archimedean component is tempered, if the Maass cusp forms are Hecke eigenforms. The standard $L$-functions of the cusp forms are proved to be products of symmetric square $L$-functions of the Hecke-eigen Maass cusp forms with shifted Riemann zeta functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube