Papers
Topics
Authors
Recent
2000 character limit reached

Uncoupled isotonic regression via minimum Wasserstein deconvolution

Published 27 Jun 2018 in math.ST, stat.ML, and stat.TH | (1806.10648v2)

Abstract: Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown nondecreasing regression function $f$ from independent pairs $(x_i, y_i)$ where $\mathbb{E}[y_i]=f(x_i), i=1, \ldots n$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart where one is given only the unordered sets ${x_1, \ldots, x_n}$ and ${y_1, \ldots, y_n}$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $y_i$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.