Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Advanced Scenario Creation Strategies for Stochastic Economic Dispatch with Renewables (1806.10530v1)

Published 27 Jun 2018 in math.OC

Abstract: Real-time dispatch practices for operating the electric grid in an economic and reliable manner are evolving to accommodate higher levels of renewable energy generation. In particular, stochastic optimization is receiving increased attention as a technique for handling the inherent uncertainty in wind and solar generation. The typical two-stage stochastic optimization formulation relies on a sample average approximation with scenarios representing errors in forecasting renewable energy ramp events. Standard Monte Carlo sampling approaches can result in prohibitively high-dimensional systems for optimization, as well as a poor representation of extreme events that challenge grid reliability. We propose two alternative scenario creation strategies, importance sampling and Bayesian quadrature, that can reduce the estimator's variance. Their performance is assessed on a week's worth of 5 minute stochastic economic dispatch decisions for realistic wind and electrical system data. Both strategies yield more economic solutions and improved reliability compared to Monte Carlo sampling, with Bayesian quadrature being less computationally intensive than importance sampling and more economic when considering at least 20 scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.