Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Evaluating Stochastic Methods in Power System Operations with Wind Power (1602.08517v1)

Published 26 Feb 2016 in math.OC

Abstract: Wind power is playing an increasingly important role in electricity markets. However, it's inherent variability and uncertainty cause operational challenges and costs as more operating reserves are needed to maintain system reliability. Several operational strategies have been proposed to address these challenges, including advanced probabilistic wind forecasting techniques, dynamic operating reserves, and various unit commitment (UC) and economic dispatch (ED) strategies under uncertainty. This paper presents a consistent framework to evaluate different operational strategies in power system operations with renewable energy. We use conditional Kernel Density Estimation (KDE) for probabilistic wind power forecasting. Forecast scenarios are generated considering spatio-temporal correlations, and further reduced to lower the computational burden. Scenario-based stochastic programming with different decomposition techniques and interval optimization are tested to examine economic, reliability, and computational performance compared to deterministic UC/ED benchmarks. We present numerical results for a modified IEEE-118 bus system with realistic system load and wind data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.