A note on mean equicontinuity (1806.09987v4)
Abstract: In this note, it is shown that several results concerning mean equicontinuity proved before for minimal systems are actually held for general topological dynamical systems. Particularly, it turns out that a dynamical system is mean equicontinuous if and only if it is equicontinuous in the mean if and only if it is Banach (or Weyl) mean equicontinuous if and only if its regionally proximal relation is equal to the Banach proximal relation. Meanwhile, a relation is introduced such that the smallest closed invariant equivalence relation containing this relation induces the maximal mean equicontinuous factor for any system.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.