Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distinguished curves and integrability in Riemannian, conformal, and projective geometry (1806.09830v2)

Published 26 Jun 2018 in math.DG, gr-qc, math-ph, and math.MP

Abstract: We give a new characterisation of the unparametrised geodesics, or distinguished curves, for affine, pseudo-Riemannian, conformal, and projective geometry. This is a type of moving incidence relation. The characterisation is used to provide a very general theory and construction of quantities that are necessarily conserved along the curves. The formalism immediately yields explicit formulae for these curve first integrals. The usual role of Killing tensors and conformal Killing tensors is recovered as a special case, but the construction shows that a significantly larger class of equation solutions also yield curve first integrals. In particular any normal solution to an equation from the class of first BGG equations can yield such a conserved quantity. For some equations the condition of normality is not required. For nowhere-null curves in pseudo-Riemannian and conformal geometry additional results are available. We provide a fundamental tractor-valued invariant of such curves and this quantity is parallel if and only if the curve is an unparametrised conformal circle.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.