Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semantic Compression of Episodic Memories (1806.07990v1)

Published 20 Jun 2018 in q-bio.NC

Abstract: Storing knowledge of an agent's environment in the form of a probabilistic generative model has been established as a crucial ingredient in a multitude of cognitive tasks. Perception has been formalised as probabilistic inference over the state of latent variables, whereas in decision making the model of the environment is used to predict likely consequences of actions. Such generative models have earlier been proposed to underlie semantic memory but it remained unclear if this model also underlies the efficient storage of experiences in episodic memory. We formalise the compression of episodes in the normative framework of information theory and argue that semantic memory provides the distortion function for compression of experiences. Recent advances and insights from machine learning allow us to approximate semantic compression in naturalistic domains and contrast the resulting deviations in compressed episodes with memory errors observed in the experimental literature on human memory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.