Papers
Topics
Authors
Recent
2000 character limit reached

Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network (1806.06953v3)

Published 14 Jun 2018 in cs.LG, cs.AI, and stat.ML

Abstract: The deep Q-network (DQN) and return-based reinforcement learning are two promising algorithms proposed in recent years. DQN brings advances to complex sequential decision problems, while return-based algorithms have advantages in making use of sample trajectories. In this paper, we propose a general framework to combine DQN and most of the return-based reinforcement learning algorithms, named R-DQN. We show the performance of traditional DQN can be improved effectively by introducing return-based reinforcement learning. In order to further improve the R-DQN, we design a strategy with two measurements which can qualitatively measure the policy discrepancy. Moreover, we give the two measurements' bounds in the proposed R-DQN framework. We show that algorithms with our strategy can accurately express the trace coefficient and achieve a better approximation to return. The experiments, conducted on several representative tasks from the OpenAI Gym library, validate the effectiveness of the proposed measurements. The results also show that the algorithms with our strategy outperform the state-of-the-art methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.