2000 character limit reached
Normal approximation for sums of discrete $U$-statistics - application to Kolmogorov bounds in random subgraph counting (1806.05339v1)
Published 14 Jun 2018 in math.PR
Abstract: We derive normal approximation bounds in the Kolmogorov distance for sums of discrete multiple integrals and $U$-statistics made of independent Bernoulli random variables. Such bounds are applied to normal approximation for the renormalized subgraphs counts in the Erd{\H o}s-R\'enyi random graph. This approach completely solves a long-standing conjecture in the general setting of arbitrary graph counting, while recovering and improving recent results derived for triangles as well as results using the Wasserstein distance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.