Kuramoto model for excitation-inhibition-based oscillations (1806.05279v1)
Abstract: The Kuramoto model (KM) is a theoretical paradigm for investigating the emergence of rhythmic activity in large populations of oscillators. A remarkable example of rhythmogenesis is the feedback loop between excitatory (E) and inhibitory (I) cells in large neuronal networks. Yet, although the EI-feedback mechanism plays a central role in the generation of brain oscillations, it remains unexplored whether the KM has enough biological realism to describe it. Here we derive a two-population KM that fully accounts for the onset of EI-based neuronal rhythms and that, as the original KM, is analytically solvable to a large extent. Our results provide a powerful theoretical tool for the analysis of large-scale neuronal oscillations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.