Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Mirror Prox for Monotone Variational Inequalities: Universality and Inexact Oracle (1806.05140v3)

Published 13 Jun 2018 in math.OC

Abstract: We introduce an inexact oracle model for variational inequalities (VI) with monotone operator, propose a numerical method which solves such VI's and analyze its convergence rate. As a particular case, we consider VI's with H\"older-continuous operator and show that our algorithm is universal. This means that without knowing the H\"older parameter $\nu$ and H\"older constant $L_{\nu}$ it has the best possible complexity for this class of VI's, namely our algorithm has complexity $O\left( \inf_{\nu\in[0,1]}\left(\frac{L_{\nu}}{\varepsilon} \right){\frac{2}{1+\nu}}R2 \right)$, where $R$ is the size of the feasible set and $\varepsilon$ is the desired accuracy of the solution. We also consider the case of VI's with strongly monotone operator and generalize our method for VI's with inexact oracle and our universal method for this class of problems. Finally, we show, how our method can be applied to convex-concave saddle point problems with H\"older-continuous partial subgradients.

Summary

We haven't generated a summary for this paper yet.