Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact Relative Smoothness and Strong Convexity for Optimization and Variational Inequalities by Inexact Model (2001.09013v9)

Published 23 Jan 2020 in math.OC

Abstract: In this paper, we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems, and variational inequalities. This framework allows obtaining many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, Bregman proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows constructing new methods, which we illustrate by constructing a universal conditional gradient method and a universal method for variational inequalities with a composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem's smoothness. As a particular case of our general framework, we introduce relative smoothness for operators and propose an algorithm for variational inequalities (VIs) with such operators. We also generalize our framework for relatively strongly convex objectives and strongly monotone variational inequalities. This paper is an extended and updated version of [arXiv:1902.00990]. In particular, we add an extension of relative strong convexity for optimization and variational inequalities.

Summary

We haven't generated a summary for this paper yet.