2000 character limit reached
Isoperimetric inequalities in Riemann surfaces and graphs (1806.04619v1)
Published 12 Jun 2018 in math.MG
Abstract: A celebrated theorem of Kanai states that quasi-isometries preserve isoperimetric inequalities between uniform Riemannian manifolds (with positive injectivity radius) and graphs. Our main result states that we can study the (Cheeger) isoperimetric inequality in a Riemann surface by using a graph related to it, even if the surface has injectivity radius zero (this graph is inspired in Kanai's graph, but it is different from it). We also present an application relating Gromov boundary and isoperimetric inequality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.