Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Time-inhomogeneous polynomial processes (1806.03887v1)

Published 11 Jun 2018 in math.PR and q-fin.MF

Abstract: Time homogeneous polynomial processes are Markov processes whose moments can be calculated easily through matrix exponentials. In this work, we develop a notion of time inhomogeneous polynomial processes where the coeffiecients of the process may depend on time. A full characterization of this model class is given by means of their semimartingale characteristics. We show that in general, the computation of moments by matrix exponentials is no longer possible. As an alternative we explore a connection to Magnus series for fast numerical approximations. Time-inhomogeneity is important in a number of applications: in term-structure models, this allows a perfect calibration to available prices. In electricity markets, seasonality comes naturally into play and have to be captured by the used models. The model class studied in this work extends existing models, for example Sato processes and time-inhomogeneous affine processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.