Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Polynomial Volterra processes (2403.14251v1)

Published 21 Mar 2024 in math.PR

Abstract: We study the class of continuous polynomial Volterra processes, which we define as solutions to stochastic Volterra equations driven by a continuous semimartingale with affine drift and quadratic diffusion matrix in the state of the Volterra process. To demonstrate the versatility of possible state spaces within our framework, we construct polynomial Volterra processes on the unit ball. This construction is based on a stochastic invariance principle for stochastic Volterra equations with possibly singular kernels. Similarly to classical polynomial processes, polynomial Volterra processes allow for tractable expressions of the moments in terms of the unique solution to a system of deterministic integral equations, which reduce to a system of ODEs in the classical case. By applying this observation to the moments of the finite-dimensional distributions we derive a uniqueness result for polynomial Volterra processes. Moreover, we prove that the moments are polynomials with respect to the initial condition, another crucial property shared by classical polynomial processes. The corresponding coefficients can be interpreted as a deterministic dual process and solve integral equations dual to those verified by the moments themselves. Additionally, we obtain a representation of the moments in terms of a pure jump process with killing, which corresponds to another non-deterministic dual process.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.