Papers
Topics
Authors
Recent
2000 character limit reached

A compactness result for the Sobolev embedding via potential theory

Published 10 Jun 2018 in math.AP | (1806.03606v1)

Abstract: In this note we give a proof of the Sobolev and Morrey embedding theorems based on the representation of functions in terms of the fundamental solution of suitable partial differential operators. We also prove the compactness of the Sobolev embedding. We first describe this method in the classical setting, where the fundamental solution of the Laplace equation is used, to recover the classical Sobolev and Morrey theorems. We next consider degenerate Kolmogorov equations. In this case, the fundamental solution is invariant with respect to a non-Euclidean translation group and the usual convolution is replaced by an operation that is defined in accordance with this geometry. We recover some known embedding results and we prove the compactness of the Sobolev embedding. We finally apply our regularity results to a kinetic equation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.