2000 character limit reached
Construction of continuum from a discrete surface by its iterated subdivisions (1806.03531v4)
Published 9 Jun 2018 in math.DG
Abstract: Given a trivalent graph in the 3-dimensional Euclidean space, we call it a discrete surface because it has a tangent space at each vertex determined by its neighbor vertices. To abstract a continuum object hidden in the discrete surface, we introduce a subdivision method by applying the Goldberg-Coxeter subdivision and discuss the convergence of a sequence of discrete surfaces defined inductively by the subdivision. We also study the limit set as the continuum geometric object associated with the given discrete surface.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.