Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Semantic Segmentation with Ladder-DenseNet Models (1806.03465v1)

Published 9 Jun 2018 in cs.CV and cs.LG

Abstract: We present semantic segmentation experiments with a model capable to perform predictions on four benchmark datasets: Cityscapes, ScanNet, WildDash and KITTI. We employ a ladder-style convolutional architecture featuring a modified DenseNet-169 model in the downsampling datapath, and only one convolution in each stage of the upsampling datapath. Due to limited computing resources, we perform the training only on Cityscapes Fine train+val, ScanNet train, WildDash val and KITTI train. We evaluate the trained model on the test subsets of the four benchmarks in concordance with the guidelines of the Robust Vision Challenge ROB 2018. The performed experiments reveal several interesting findings which we describe and discuss.

Citations (12)

Summary

We haven't generated a summary for this paper yet.