2000 character limit reached
Initial-Boundary value problem of the Navier-Stokes equations in the half space with nonhomogeneous data (1806.02518v1)
Published 7 Jun 2018 in math.AP
Abstract: This paper discusses the solvability (global in time) of the initial-boundary value problem of the Navier-stokes equations in the half space when the initial data $ h\in \dot{ B}{q \sigma}{\alpha-\frac{2}{q}}(\R+)$ and the boundary data $ g\in \dot{ B}q{\alpha-\frac{1}{q},\frac{\al}{2}-\frac{1}{2q}}({\mathbb R}{n-1}\times {\mathbb R}+) $ with $g_n\in \dot B{\frac12 \alpha}q ({\mathbb R}+; \dot B{-\frac1q}_q ({\mathbb R}{n-1}))\cap Lq({\mathbb R}_+;\dot{B}{\alpha-\frac{1}{q}}(\Rn))$, for any $0<\alpha<2$ and $q =\frac{n+2}{\alpha+1}$. Compatibility condition is required for $h$ and $g$.