Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence of non-Newtonian incompressible fluids in half space with nonhomogeneous initial-boundary data (2208.03432v5)

Published 6 Aug 2022 in math.AP

Abstract: In this study, we investigate the global existence of weak solutions of non-Newtonian incompressible fluids governed by (1.1). When $u_0 \in \dot B{\alpha-\frac{2}{p}}_{p,q}({\mathbb R}{n}_+) \, \cap \,\dot B{ 1 -\frac4{n+2}}{\frac{n+2}2,\frac{n+2}2}({\mathbb R}{n}+) \,\cap \, \dot B{1 +\frac{n}p}{p,1} (\mathbb{R}+)$ is given, we will find the weak solutions for the equation (1.1) in the function space $C_b ([ 0, \infty; \dot B{\alpha -\frac2p}{p,q} ({\mathbb R}n+)) \cap C_b (0, \infty; \dot B{1 -\frac4{n+2}}{\frac{n+2}2} (\mathbb{R}+)) \cap L\infty(0, \infty; \dot W1_\infty(\mathbb{R}_+))$, $ n+2 < p < \infty, \,\, 1 \leq q \leq \infty, \,\, 1 + \frac{n+2}p < \alpha < 2$. We show the existence of weak solutions in the anisotropic Besov spaces $\dot B{\alpha, \frac{\alpha}2}{p,q} (\mathbb{R}+ \times (0, \infty))$ (see Theorem (1.2)) and we show the embedding $\dot B{\alpha, \frac{\alpha}2}{p,q} (\mathbb{R}+ \times (0, \infty) \subset C_b ([ 0, \infty; \dot B{\alpha -\frac2p}{p,q} ({\mathbb R}n+))$ (see Lemma (2.8)). For the global existence of solutions, we assume that the extra stress tensor $S$ is represented by $S({\mathbb A}) = {\mathbb F} ( {\mathbb A}) {\mathbb A}$, where ${\mathbb F}(0) $ is a uniformly elliptic matrix and $ {\mathbb F} \in C2(B(0,1))$, where $B(0,1)$ is open ball in ${\mathbb R}{n\times n}$ whose center is origin and radius. is $1$. Note that $S_1$, $S_2$ and $S_3$ introduced in (1.2) satisfy our assumptions.

Summary

We haven't generated a summary for this paper yet.