Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solvability of the Initial-Boundary value problem of the Navier-Stokes equations with rough data (1503.08638v1)

Published 30 Mar 2015 in math.AP

Abstract: In this paper, we study the initial and boundary value problem of the Navier-Stokes equations in the half space. We prove the unique existence of weak solution $u\in Lq(\R_+\times (0,T))$ with $\nabla u\in L{\frac{q}{2}}{loc}(\R+\times (0,T))$ for a short time interval when the initial data $h\in {B}q{-\frac{2}{q}}(\R+)$ and the boundary data $ g\in Lq(0,T;B{-\frac{1}{q}}_q(\Rn))+Lq(\Rn;B{-\frac{1}{2q}}_q(0,T)) $ with normal component $g_n\in Lq(0,T;\dot{B}{-\frac{1}{q}}_q(\Rn))$, $n+2<q<\infty$ are given.

Summary

We haven't generated a summary for this paper yet.