Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Likelihood-based Alternative to Null Hypothesis Significance Testing

Published 6 Jun 2018 in stat.ME | (1806.02419v4)

Abstract: The logical and practical difficulties associated with research interpretation using P values and null hypothesis significance testing have been extensively documented. This paper describes an alternative, likelihood-based approach to P-value interpretation. The P-value and sample size of a research study are used to derive a likelihood function with a single parameter, the estimated population effect size, and the method of maximum likelihood estimation is used to calculate the most likely effect size. Comparison of the likelihood of the most likely effect size and the likelihood of the minimum clinically significant effect size using the likelihood ratio test yields the clinical significance support level (or S-value), a logical and easily understood metric of research evidence. This clinical significance likelihood approach has distinct advantages over null hypothesis significance testing. As motivating examples we demonstrate the calculation and interpretation of S-values applied to two recent widely publicised trials, WOMAN from the Lancet and RELIEF from the New England Journal of Medicine.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.