Discrete Bethe--Sommerfeld Conjecture for Triangular, Square, and Hexagonal Lattices (1806.01988v1)
Abstract: We study discrete Schr\"odinger operators on the graphs corresponding to the triangular lattice, the hexagonal lattice, and the square lattice with next-nearest neighbor interactions. For each of these lattice geometries, we analyze the behavior of small periodic potentials. In particular, we provide sharp bounds on the number of gaps that may perturbatively open, we describe sharp arithmetic criteria on the periods that ensure that no gaps open, and we characterize those energies at which gaps may open in the perturbative regime. In all three cases, we provide examples that open the maximal number of gaps and estimate the scaling behavior of the gap lengths as the coupling constant goes to zero.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.