Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combining Multiple Algorithms in Classifier Ensembles using Generalized Mixture Functions (1806.01540v1)

Published 5 Jun 2018 in cs.LG and stat.ML

Abstract: Classifier ensembles are pattern recognition structures composed of a set of classification algorithms (members), organized in a parallel way, and a combination method with the aim of increasing the classification accuracy of a classification system. In this study, we investigate the application of a generalized mixture (GM) functions as a new approach for providing an efficient combination procedure for these systems through the use of dynamic weights in the combination process. Therefore, we present three GM functions to be applied as a combination method. The main advantage of these functions is that they can define dynamic weights at the member outputs, making the combination process more efficient. In order to evaluate the feasibility of the proposed approach, an empirical analysis is conducted, applying classifier ensembles to 25 different classification data sets. In this analysis, we compare the use of the proposed approaches to ensembles using traditional combination methods as well as the state-of-the-art ensemble methods. Our findings indicated gains in terms of performance when comparing the proposed approaches to the traditional ones as well as comparable results with the state-of-the-art methods.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.