Papers
Topics
Authors
Recent
Search
2000 character limit reached

Topological complexity of configuration spaces of fully articulated graphs and banana graphs

Published 2 Jun 2018 in math.AT and math.GT | (1806.00659v2)

Abstract: In this paper we determine the topological complexity of configuration spaces of graphs which are not necessarily trees, which is a crucial assumption in previous results. We do this for two very different classes of graphs: fully articulated graphs and banana graphs. We also complete the computation in the case of trees to include configuration spaces with any number of points, extending a proof of Farber. At the end we show that an unordered configuration space on a graph does not always have the same topological complexity as the corresponding ordered configuration space (not even when they are both connected). Surprisingly, in our counterexamples the topological complexity of the unordered configuration space is in fact smaller than for the ordered one.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.