Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized modes in Bayesian inverse problems (1806.00519v2)

Published 1 Jun 2018 in math.ST, math.OC, and stat.TH

Abstract: Uncertainty quantification requires efficient summarization of high- or even infinite-dimensional (i.e., non-parametric) distributions based on, e.g., suitable point estimates (modes) for posterior distributions arising from model-specific prior distributions. In this work, we consider non-parametric modes and MAP estimates for priors that do not admit continuous densities, for which previous approaches based on small ball probabilities fail. We propose a novel definition of generalized modes based on the concept of approximating sequences, which reduce to the classical mode in certain situations that include Gaussian priors but also exist for a more general class of priors. The latter includes the case of priors that impose strict bounds on the admissible parameters and in particular of uniform priors. For uniform priors defined by random series with uniformly distributed coefficients, we show that generalized MAP estimates -- but not classical MAP estimates -- can be characterized as minimizers of a suitable functional that plays the role of a generalized Onsager--Machlup functional. This is then used to show consistency of nonlinear Bayesian inverse problems with uniform priors and Gaussian noise.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.