Papers
Topics
Authors
Recent
2000 character limit reached

Extreme values of CUE characteristic polynomials: a numerical study (1806.00286v2)

Published 1 Jun 2018 in cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: We present the results of systematic numerical computations relating to the extreme value statistics of the characteristic polynomials of random unitary matrices drawn from the Circular Unitary Ensemble (CUE) of Random Matrix Theory. In particular, we investigate a range of recent conjectures and theoretical results inspired by analogies with the theory of logarithmically-correlated Gaussian random fields. These include phenomena related to the conjectured freezing transition. Our numerical results are consistent with, and therefore support, the previous conjectures and theory. We also go beyond previous investigations in several directions: we provide the first quantitative evidence in support of a correlation between extreme values of the characteristic polynomials and large gaps in the spectrum, we investigate the rate of convergence to the limiting formulae previously considered, and we extend the previous analysis of the CUE to the C$\beta$E which corresponds to allowing the degree of the eigenvalue repulsion to become a parameter.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.