Papers
Topics
Authors
Recent
2000 character limit reached

Interpretable Set Functions (1806.00050v1)

Published 31 May 2018 in cs.LG, cs.AI, and stat.ML

Abstract: We propose learning flexible but interpretable functions that aggregate a variable-length set of permutation-invariant feature vectors to predict a label. We use a deep lattice network model so we can architect the model structure to enhance interpretability, and add monotonicity constraints between inputs-and-outputs. We then use the proposed set function to automate the engineering of dense, interpretable features from sparse categorical features, which we call semantic feature engine. Experiments on real-world data show the achieved accuracy is similar to deep sets or deep neural networks, and is easier to debug and understand.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.