Papers
Topics
Authors
Recent
2000 character limit reached

On representation power of neural network-based graph embedding and beyond (1805.12332v2)

Published 31 May 2018 in stat.ML and cs.LG

Abstract: We consider the representation power of siamese-style similarity functions used in neural network-based graph embedding. The inner product similarity (IPS) with feature vectors computed via neural networks is commonly used for representing the strength of association between two nodes. However, only a little work has been done on the representation capability of IPS. A very recent work shed light on the nature of IPS and reveals that IPS has the capability of approximating any positive definite (PD) similarities. However, a simple example demonstrates the fundamental limitation of IPS to approximate non-PD similarities. We then propose a novel model named Shifted IPS (SIPS) that approximates any Conditionally PD (CPD) similarities arbitrary well. CPD is a generalization of PD with many examples such as negative Poincar\'e distance and negative Wasserstein distance, thus SIPS has a potential impact to significantly improve the applicability of graph embedding without taking great care in configuring the similarity function. Our numerical experiments demonstrate the SIPS's superiority over IPS. In theory, we further extend SIPS beyond CPD by considering the inner product in Minkowski space so that it approximates more general similarities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.