Papers
Topics
Authors
Recent
2000 character limit reached

Context Exploitation using Hierarchical Bayesian Models (1805.12183v1)

Published 30 May 2018 in cs.AI and cs.CV

Abstract: We consider the problem of how to improve automatic target recognition by fusing the naive sensor-level classification decisions with "intuition," or context, in a mathematically principled way. This is a general approach that is compatible with many definitions of context, but for specificity, we consider context as co-occurrence in imagery. In particular, we consider images that contain multiple objects identified at various confidence levels. We learn the patterns of co-occurrence in each context, then use these patterns as hyper-parameters for a Hierarchical Bayesian Model. The result is that low-confidence sensor classification decisions can be dramatically improved by fusing those readings with context. We further use hyperpriors to address the case where multiple contexts may be appropriate. We also consider the Bayesian Network, an alternative to the Hierarchical Bayesian Model, which is computationally more efficient but assumes that context and sensor readings are uncorrelated.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.