Papers
Topics
Authors
Recent
2000 character limit reached

On the dimension spectrum of infinite subsystems of continued fractions (1805.11904v1)

Published 30 May 2018 in math.DS and math.NT

Abstract: In this paper we study the dimension spectrum of continued fractions with coefficients restricted to infinite subsets of natural numbers. We prove that if $E$ is any arithmetic progression, the set of primes, or the set of squares ${n2}_{n \in \mathbb{N}}$, then the continued fractions whose digits lie in $E$ have full dimension spectrum, which we denote by $DS(\mathcal{CF}_E)$. Moreover we prove that if $E$ is an infinite set of consecutive powers then the dimension spectrum $DS(\mathcal{CF}_E)$ always contains a non trivial interval. We also show that there exists some $E \subset \mathbb{N}$ and two non-trivial intervals $I_1, I_2$, such that $DS(\mathcal{CF}_E) \cap I_1=I_1$ and $DS(\mathcal{CF}_E) \cap I_2$ is a Cantor set. On the way we employ the computational approach of Falk and Nussbaum in order to obtain rigorous effective estimates for the Hausdorff dimension of continued fractions whose entries are restricted to infinite sets.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.