Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Optimization as a Feedback Controller: Stability and Tracking (1805.09877v2)

Published 24 May 2018 in math.OC

Abstract: This paper develops and analyzes feedback-based online optimization methods to regulate the output of a linear time-invariant (LTI) dynamical system to the optimal solution of a time-varying convex optimization problem. The design of the algorithm is based on continuous-time primal-dual dynamics, properly modified to incorporate feedback from the LTI dynamical system, applied to a proximal augmented Lagrangian function. The resultant closed-loop algorithm tracks the solution of the time-varying optimization problem without requiring knowledge of (time-varying) disturbances in the dynamical system. The analysis leverages integral quadratic constraints to provide linear matrix inequality (LMI) conditions that guarantee global exponential stability and bounded tracking error. Analytical results show that, under a sufficient time-scale separation between the dynamics of the LTI dynamical system and the algorithm, the LMI conditions can be always satisfied. The paper further proposes a modified algorithm that can track an approximate solution trajectory of the constrained optimization problem under less restrictive assumptions. As an illustrative example, the proposed algorithms are showcased for power transmission systems, to compress the time scales between secondary and tertiary control, and allow to simultaneously power re-balancing and tracking of DC optimal power flow points.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.