Papers
Topics
Authors
Recent
2000 character limit reached

Implicit Autoencoders

Published 24 May 2018 in cs.LG and stat.ML | (1805.09804v2)

Abstract: In this paper, we describe the "implicit autoencoder" (IAE), a generative autoencoder in which both the generative path and the recognition path are parametrized by implicit distributions. We use two generative adversarial networks to define the reconstruction and the regularization cost functions of the implicit autoencoder, and derive the learning rules based on maximum-likelihood learning. Using implicit distributions allows us to learn more expressive posterior and conditional likelihood distributions for the autoencoder. Learning an expressive conditional likelihood distribution enables the latent code to only capture the abstract and high-level information of the data, while the remaining low-level information is captured by the implicit conditional likelihood distribution. We show the applications of implicit autoencoders in disentangling content and style information, clustering, semi-supervised classification, learning expressive variational distributions, and multimodal image-to-image translation from unpaired data.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.