Papers
Topics
Authors
Recent
2000 character limit reached

New Insights into Bootstrapping for Bandits (1805.09793v1)

Published 24 May 2018 in cs.LG and stat.ML

Abstract: We investigate the use of bootstrapping in the bandit setting. We first show that the commonly used non-parametric bootstrapping (NPB) procedure can be provably inefficient and establish a near-linear lower bound on the regret incurred by it under the bandit model with Bernoulli rewards. We show that NPB with an appropriate amount of forced exploration can result in sub-linear albeit sub-optimal regret. As an alternative to NPB, we propose a weighted bootstrapping (WB) procedure. For Bernoulli rewards, WB with multiplicative exponential weights is mathematically equivalent to Thompson sampling (TS) and results in near-optimal regret bounds. Similarly, in the bandit setting with Gaussian rewards, we show that WB with additive Gaussian weights achieves near-optimal regret. Beyond these special cases, we show that WB leads to better empirical performance than TS for several reward distributions bounded on $[0,1]$. For the contextual bandit setting, we give practical guidelines that make bootstrapping simple and efficient to implement and result in good empirical performance on real-world datasets.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.