Papers
Topics
Authors
Recent
2000 character limit reached

Online Regularized Nonlinear Acceleration (1805.09639v2)

Published 24 May 2018 in math.OC, cs.LG, and stat.ML

Abstract: Regularized nonlinear acceleration (RNA) estimates the minimum of a function by post-processing iterates from an algorithm such as the gradient method. It can be seen as a regularized version of Anderson acceleration, a classical acceleration scheme from numerical analysis. The new scheme provably improves the rate of convergence of fixed step gradient descent, and its empirical performance is comparable to that of quasi-Newton methods. However, RNA cannot accelerate faster multistep algorithms like Nesterov's method and often diverges in this context. Here, we adapt RNA to overcome these issues, so that our scheme can be used on fast algorithms such as gradient methods with momentum. We show optimal complexity bounds for quadratics and asymptotically optimal rates on general convex minimization problems. Moreover, this new scheme works online, i.e., extrapolated solution estimates can be reinjected at each iteration, significantly improving numerical performance over classical accelerated methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.