Concentration of dynamic risk measures in a Brownian filtration (1805.09014v1)
Abstract: Motivated by liquidity risk in mathematical finance, D. Lacker introduced concentration inequalities for risk measures, i.e. upper bounds on the \emph{liquidity risk profile} of a financial loss. We derive these inequalities in the case of time-consistent dynamic risk measures when the filtration is assumed to carry a Brownian motion. The theory of backward stochastic differential equations (BSDEs) and their dual formulation plays a crucial role in our analysis. Natural by-products of concentration of risk measures are a description of the tail behavior of the financial loss and transport-type inequalities in terms of the generator of the BSDE, which in the present case can grow arbitrarily fast.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.