Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Sketching Bounds for Exp-concave Stochastic Minimization (1805.08268v7)

Published 21 May 2018 in cs.LG and stat.ML

Abstract: We derive optimal statistical and computational complexity bounds for exp-concave stochastic minimization in terms of the effective dimension. For common eigendecay patterns of the population covariance matrix, this quantity is significantly smaller than the ambient dimension. Our results reveal interesting connections to sketching results in numerical linear algebra. In particular, our statistical analysis highlights a novel and natural relationship between algorithmic stability of empirical risk minimization and ridge leverage scores, which play significant role in sketching-based methods. Our main computational result is a fast implementation of a sketch-to-precondition approach in the context of exp-concave empirical risk minimization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.