Analysis of Multilayer Perceptron with Rectifier Linear Unit Activation Function
Abstract: The implementation of analog neural network and online analog learning circuits based on memristive crossbar has been intensively explored in recent years. The implementation of various activation functions is important, especially for deep leaning neural networks. There are several implementations of sigmoid and tangent activation function, while the implementation of the neural networks with linear activation functions is an open problem. Therefore, this paper introduces a multilayer perceptron design with linear activation function. The temperature and noise analysis was performed. The perceptron showed a good performance and strong durability to temperature changes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.