Algorithmic Trading with Fitted Q Iteration and Heston Model (1805.07478v1)
Abstract: We present the use of the fitted Q iteration in algorithmic trading. We show that the fitted Q iteration helps alleviate the dimension problem that the basic Q-learning algorithm faces in application to trading. Furthermore, we introduce a procedure including model fitting and data simulation to enrich training data as the lack of data is often a problem in realistic application. We experiment our method on both simulated environment that permits arbitrage opportunity and real-world environment by using prices of 450 stocks. In the former environment, the method performs well, implying that our method works in theory. To perform well in the real-world environment, the agents trained might require more training (iteration) and more meaningful variables with predictive value.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.