Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Low-Cost Recurrent Neural Network Expected Performance Evaluation (1805.07159v2)

Published 18 May 2018 in cs.LG and stat.ML

Abstract: Recurrent neural networks are a powerful tool, but they are very sensitive to their hyper-parameter configuration. Moreover, training properly a recurrent neural network is a tough task, therefore selecting an appropriate configuration is critical. Varied strategies have been proposed to tackle this issue. However, most of them are still impractical because of the time/resources needed. In this study, we propose a low computational cost model to evaluate the expected performance of a given architecture based on the distribution of the error of random samples of the weights. We empirically validate our proposal using three use cases. The results suggest that this is a promising alternative to reduce the cost of exploration for hyper-parameter optimization.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com