Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian model reduction (1805.07092v2)

Published 18 May 2018 in stat.ME

Abstract: This paper reviews recent developments in statistical structure learning; namely, Bayesian model reduction. Bayesian model reduction is a method for rapidly computing the evidence and parameters of probabilistic models that differ only in their priors. In the setting of variational Bayes this has an analytical solution, which finesses the problem of scoring large model spaces in model comparison or structure learning. In this technical note, we review Bayesian model reduction and provide the relevant equations for several discrete and continuous probability distributions. We provide worked examples in the context of multivariate linear regression, Gaussian mixture models and dynamical systems (dynamic causal modelling). These examples are accompanied by the Matlab scripts necessary to reproduce the results. Finally, we briefly review recent applications in the fields of neuroimaging and neuroscience. Specifically, we consider structure learning and hierarchical or empirical Bayes that can be regarded as a metaphor for neurobiological processes like abductive reasoning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.