Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Strongly Consistent of Kullback-Leibler Divergence Estimator and Tests for Model Selection Based on a Bias Reduced Kernel Density Estimator (1805.07088v1)

Published 18 May 2018 in stat.ME

Abstract: In this paper, we study the strong consistency of a bias reduced kernel density estimator and derive a strongly con- sistent Kullback-Leibler divergence (KLD) estimator. As application, we formulate a goodness-of-fit test and an asymptotically standard normal test for model selection. The Monte Carlo simulation show the effectiveness of the proposed estimation methods and statistical tests.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.