Geometrical properties of trapped surfaces and apparent horizons (1805.05684v1)
Abstract: In this paper, we perform a detailed investigation on the various geometrical properties of trapped surfaces and the boundaries of trapped region in general relativity. This treatment extends earlier work on LRS II spacetimes to a general 4 dimensional spacetime manifold. Using a semi-tetrad covariant formalism, that provides a set of geometrical and matter variables, we transparently demonstrate the evolution of the trapped region and also extend Hawking's topology theorem to a wider class of spacetimes. In addition, we perform a stability analysis for the apparent horizons in this formalism, encompassing earlier works on this subject. As examples, we consider the stability of MOTS of the Schwarzschild geometry and Oppenheimer-Snyder collapse.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.