A streaming algorithm for bivariate empirical copulas (1805.05168v2)
Abstract: Empirical copula functions can be used to model the dependence structure of multivariate data. The Greenwald and Khanna algorithm is adapted in order to provide a space-memory efficient approximation to the empirical copula function of a bivariate stream of data. A succinct space-memory efficient summary of values seen in the stream up to a certain time is maintained and can be queried at any point to return an approximation to the empirical bivariate copula function with guaranteed error bounds. An example then illustrates how these summaries can be used as a tool to compute approximations to higher dimensional copula decompositions containing bivariate copulas. The computational benefits and approximation error of the algorithm is theoretically and numerically assessed.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.