Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Analog of Matrix Tree Theorem for Signless Laplacians (1805.04759v1)

Published 12 May 2018 in math.CO

Abstract: A spanning tree of a graph is a connected subgraph on all vertices with the minimum number of edges. The number of spanning trees in a graph $G$ is given by Matrix Tree Theorem in terms of principal minors of Laplacian matrix of $G$. We show a similar combinatorial interpretation for principal minors of signless Laplacian $Q$. We also prove that the number of odd cycles in $G$ is less than or equal to $\frac{\det(Q)}{4}$, where the equality holds if and only if $G$ is a bipartite graph or an odd-unicyclic graph.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.