Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapping Multilingual Intent Models via Machine Translation for Dialog Automation (1805.04453v1)

Published 11 May 2018 in cs.CL

Abstract: With the resurgence of chat-based dialog systems in consumer and enterprise applications, there has been much success in developing data-driven and rule-based natural LLMs to understand human intent. Since these models require large amounts of data and in-domain knowledge, expanding an equivalent service into new markets is disrupted by language barriers that inhibit dialog automation. This paper presents a user study to evaluate the utility of out-of-the-box machine translation technology to (1) rapidly bootstrap multilingual spoken dialog systems and (2) enable existing human analysts to understand foreign language utterances. We additionally evaluate the utility of machine translation in human assisted environments, where a portion of the traffic is processed by analysts. In English->Spanish experiments, we observe a high potential for dialog automation, as well as the potential for human analysts to process foreign language utterances with high accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.