Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Polyhedral-based Methods for Mixed-Integer SOCP in Tree Breeding (1805.03809v1)

Published 10 May 2018 in math.OC

Abstract: Optimal contribution selection (OCS) is a mathematical optimization problem that aims to maximize the total benefit from selecting a group of individuals under a constraint on genetic diversity. We are specifically focused on OCS as applied to forest tree breeding, when selected individuals will contribute equally to the gene pool. Since the diversity constraint in OCS can be described with a second-order cone, equal deployment in OCS can be mathematically modeled as mixed-integer second-order cone programming (MI-SOCP). If we apply a general solver for MI-SOCP, non-linearity embedded in OCS requires a heavy computation cost. To address this problem, we propose an implementation of lifted polyhedral programming (LPP) relaxation and a cone-decomposition method (CDM) to generate effective linear approximations for OCS. In particular, CDM successively solves OCS problems much faster than generic approaches for MI-SOCP. The approach of CDM is not limited to OCS, so that we can also apply the approach to other MI-SOCP problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.