Compatibility complexes of overdetermined PDEs of finite type, with applications to the Killing equation
Abstract: In linearized gravity, two linearized metrics are considered gauge-equivalent, $h_{ab} \sim h_{ab} + K_{ab}[v]$, when they differ by the image of the Killing operator, $K_{ab}[v] = \nabla_a v_b + \nabla_b v_a$. A universal (or complete) compatibility operator for $K$ is a differential operator $K_1$ such that $K_1 \circ K = 0$ and any other operator annihilating $K$ must factor through $K_1$. The components of $K_1$ can be interpreted as a complete (or generating) set of local gauge-invariant observables in linearized gravity. By appealing to known results in the formal theory of overdetermined PDEs and basic notions from homological algebra, we solve the problem of constructing the Killing compatibility operator $K_1$ on an arbitrary background geometry, as well as of extending it to a full compatibility complex $K_i$ ($i\ge 1$), meaning that for each $K_i$ the operator $K_{i+1}$ is its universal compatibility operator. Our solution is practical enough that we apply it explicitly in two examples, giving the first construction of full compatibility complexes for the Killing operator on these geometries. The first example consists of the cosmological FLRW spacetimes, in any dimension. The second consists of a generalization of the Schwarzschild-Tangherlini black hole spacetimes, also in any dimension. The generalization allows an arbitrary cosmological constant and the replacement of spherical symmetry by planar or pseudo-spherical symmetry.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.