Papers
Topics
Authors
Recent
Search
2000 character limit reached

Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach

Published 9 May 2018 in math.SP, math-ph, math.FA, and math.MP | (1805.03701v1)

Abstract: We consider the problem of embedding eigenvalues into the essential spectrum of periodic Jacobi operators, using an oscillating, decreasing potential. To do this we employ a geometric method, previously used to embed eigenvalues into the essential spectrum of the discrete Schr\"{o}dinger operator. For periodic Jacobi operators we relax the rational dependence conditions on the values of the quasi-momenta from this previous work. We then explore conditions that permit not just the existence of infinitely many subordinate solutions to the formal spectral equation but also the embedding of infinitely many eigenvalues.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.